대학원 공부노트
Isentropic flow with area change 본문
Speed of sound
$$a^{2}=\frac{\partial P}{\partial \rho}\Bigg|_{x}^{y}$$
As our flow condition is all isentropic, \(ds=0\)
$$dP=a^{2}d\rho\cdots(b)$$
Substitute equation (a) with (b), Then
$$\frac{dP}{\rho}+vdv=0$$
$$\frac{a^{2}d\rho}{\rho}+vdv=0$$
And
$$\frac{a^{2}d\rho}{\rho}+vdv=0$$
$$\frac{d\rho}{\rho}+\frac{v}{a^{2}}dv=0$$
$$\frac{d\rho}{\rho}+\frac{v^{2}}{a^{2}}\frac{dv}{v}=0$$
$$\frac{d\rho}{\rho}+M^{2}\frac{dv}{v}=0$$
Therefore,
$$\frac{d\rho}{\rho}=-M^{2}\frac{dv}{v}$$
Here, \(~\vec{v}=v\)
$$\frac{d\rho}{\rho}+\frac{dv}{v}+\frac{dA}{A}=0$$
$$-M^{2}\frac{dv}{v}+\frac{dv}{v}+\frac{dA}{A}=0$$
$$(1-M^{2})\frac{dv}{v}=-\frac{dA}{A}$$
$$\frac{dv}{v}=-\frac{1}{1-M^{2}}\frac{dA}{A}\cdots(a)$$
Apply this results on other equation (b)
$$\frac{dP}{\rho \vec{v}^{2}}=-\frac{v}{{v}^{2}}dv=-\frac{dv}{v}=\frac{1}{1-M^{2}}\frac{dA}{A}$$
'항공 > 항공역학' 카테고리의 다른 글
Equivalent Air Speed(EAS) and True Air Speed(TAS) Conversion (0) | 2023.01.29 |
---|---|
Tsiolkovskii rocket equation 치올콥스키 로켓 방정식 (0) | 2022.12.28 |
Stagnation temperature (1) | 2022.09.25 |