04-11 18:41
«   2025/04   »
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30
Archives
Today
Total
관리 메뉴

대학원 공부노트

Isentropic flow relations 본문

공학/열역학

Isentropic flow relations

lightbulb_4999 2022. 9. 19. 00:53

The first law of thermodynamics

dU=δQδW

 

The second law of thermodynamics

δSδQT

 

For the second law of thermodynamics, when we assume it is isentropic

δQ=TdS

 

Combine the two equation...

dU=δQδW

dU=TdSPdV(1)

 

And bring the concept/definition of enthalpy and differential form

u=hPv

du=dhvdPPdv(2)

 

Combine the equation (1) and (2)

du=TdsPdv(1)

du=dhvdPPdv(2)

 

TdsPdv=dhvdPPdv

Tds=dhvdP

dh=Tds+vdP(3)

 

And bring the concept of specific volume  v

m=ρV

mm=ρVm=ρv

1=ρv

v=1ρ

 

Apply the specific volume in the equation (3)

dh=Tds+dPρGibbs

 

Again, bring the concept of specific heat at constant pressure CP

dh=CP dT

dh=Tds+dPρ=CP dT(4)

 

And for ideal gas we can apply the equation below

P=ρRT

1ρ=RTP

 

Then, the equation (4) can be rearrange into

CP=Tds+RTPdP

 

And for isentropic process, ds=0

CP=RTPdP(5)

 

Now, Integrate the equation (5)

T1T2CPRdTT=P1P2dPP

 

CPR[lnT2lnT1]=lnP2lnP1

=CPRlnT2T1=lnP2P1

=ln(T2T1)CP/R=ln(P2P1)(6)

 

And we can rearrange the exponent CP/R

CPR=CPCPCv=CP/CvCP/CvCv/Cv=γγ1

 

Applying the rearranged exponent in equation (6)

P2P1=(T2T1)γ/γ1(7)

 

We can also derive the eqaution between pressure and density relation.

P=ρRT

T=PρR

T2T1=P2/(ρ2R)P1/(ρ1R)

=P2P1ρ1ρ2(8)

 

Insert the eqaution (8) on equation (7)

P2P1=(P2P1ρ1ρ2)γ/γ1

P2P1=(P2P1)γ/γ1(ρ1ρ2)γ/γ1

(P2P1)1γγ1=(P2P1)1γ1=(ρ1ρ2)γγ1

P2P1=(ρ1ρ2)γ=(ρ2ρ1)γ

 

P2P1=(ρ2ρ1)γ

 

Reference

Hypersonics - from Shock Waves to Scramjets Section 2 - Isentropic Flow