대학원 공부노트
Speed of sound 본문
Given equation:
$$\dot{m}=\rho A\vec{v}$$
$$\rho A\vec{v}=(\rho+\Delta\rho)A(c-\Delta\vec{v})$$
$$\rho c=(\rho+\Delta\rho)(c-\Delta\vec{v})$$
$$\rho c = \rho c - \rho\Delta\vec{v}+\Delta\rho c-\Delta\rho\Delta\vec{v}$$
We can neglect the last term of equation
$$0=-\rho\Delta\vec{v}+\Delta\rho c$$
$$c\Delta\rho=\rho\Delta\vec{v}$$
$$c\frac{\Delta\rho}{\rho}=\Delta\vec{v}\cdots(1)$$
Given equation:
$$PA+\rho \vec{v} \vec{v} A=(p+\Delta p)A+(\rho+\Delta \rho)(\vec{v}-\Delta\vec{v})(\vec{v}-\Delta\vec{v})A$$
As we can rearrange the two term like below:
$$(\rho+\Delta\rho)(\vec{v}-\Delta\vec{v})=\rho\vec{v}$$
$$PA+\rho \vec{v} \vec{v} A = (p+\Delta p)A+\rho \vec{v}(\vec{v}-\Delta\vec{v})A$$
We can omit \(A\) and others...
$$P+\rho\vec{v}\vec{v}=(p+\Delta p)+\rho\vec{v}(\vec{v}-\Delta\vec{v})$$
$$\rho\vec{v}\vec{v}=\Delta p+\rho\vec{v}(\vec{v}-\Delta\vec{v})$$
$$\rho\vec{v}\vec{v}=\Delta p+\rho\vec{v}\vec{v}-\rho\vec{v}\Delta\vec{v}$$
$$0=\Delta p-\rho\vec{v}\Delta\vec{v}$$
$$\rho\vec{v}\Delta\vec{v}=\Delta p$$
$$\Delta\vec{v}=\frac{1}{\rho\vec{v}}\Delta p$$
We can replace \(\vec{v}\) to \(c\) which means 'speed of sound'
$$\Delta \vec{v}=\frac{1}{\rho c}\Delta p\cdots(2)$$
Now use equation \((1)\) and \((2)\)$$\Delta\vec{v}=c\frac{\Delta p}{\rho}\cdots(1)$$$$\Delta\vec{v}=\frac{1}{\rho c}\Delta p\cdots(2)$$
$$\frac{1}{\rho c}\Delta p=c\frac{\Delta \rho}{\rho}$$$$\frac{1}{c}\Delta p=c\Delta\rho$$$$\frac{\Delta p}{\Delta \rho}=c^{2}$$
$$a^{2}=\left(\frac{\Delta p}{\Delta \rho}\right)_{s}=\left(\frac{\partial p}{\partial \rho}\right)_{s}$$
'공학 > 대학물리' 카테고리의 다른 글
원운동 1편 (0) | 2022.12.27 |
---|---|
Momentum (0) | 2022.09.17 |
파동(wave) [2] (1) | 2022.07.30 |
파동(wave) [1] (0) | 2022.07.29 |