01-27 19:17
«   2025/01   »
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31
Archives
Today
Total
관리 메뉴

대학원 공부노트

파동 방정식(wave equation) #4 본문

공학/공학수학

파동 방정식(wave equation) #4

lightbulb_4999 2022. 7. 26. 13:31

Pixabay

[모바일에서는 수식이 모두 LaTeX 그대로 나옵니다. 따라서 PC로 보실 것 적극 권장 드립니다.]

 

$$\frac{d^{2}R(r)}{dr^{2}}+\frac{2}{r}\frac{dR(r)}{dr}+\frac{\omega^{2}}{c^{2}}R(r)-\frac{n(n+1)}{r^{2}}R(r)=0$$

 

Spherical Bessel function

$$x^{2}\frac{d^{2}y}{dx^{2}}+2x\frac{dy}{dx}+\left(x^{2}-n(n+1)\right)y=0$$

 

And this is the eqaution we derived from spherical wave equation:

 

$$r^{2}\frac{d^{2}R(r)}{dr^{2}}+2r\frac{dR(r)}{dr}+r^{2}\frac{\omega^{2}}{c^{2}}R(r)-n(n+1)R(r)=0$$

 

First, bring physical concept 'wavenumber(\(\kappa\))'

$$\frac{\omega^{2}}{c^{2}}=\kappa^{2}$$

 

Then,

$$r^{2}\frac{d^{2}R(r)}{dr^{2}}+2r\frac{dR(r)}{dr}+\left[\kappa^{2}r^{2}-n(n+1)\right]R(r)=0\cdots(a)$$

 

Now, let's modify 'spherical Bessel function' to our equation \((a)\)

 

Assume \(x=\kappa r\)

$$\frac{dx}{dr}=\frac{d}{dr}(\kappa r)=\kappa$$

$$dx=\kappa dr$$

 

$$\kappa^{2}r^{2}\frac{d^{2}y}{dx^{2}}+2\kappa r\frac{dy}{dx}+\left((\kappa^{2}r^{2})-n(n+1)\right)y=0$$

$$\kappa^{2}r^{2}\frac{d}{dx}\frac{dy}{dx}+2\kappa r\frac{dy}{dx}+\left(\kappa^{2}r^{2}-n(n+1)\right)y=0$$

 

Before expanding our equation, arrange the first term.

$$\kappa r^{2}\frac{d}{dr}\frac{dy}{dx}=\kappa r^{2}\frac{d}{dr}\frac{dy}{\kappa dr}=r^{2}\frac{d^{2}y}{dr^{2}}$$

 

Then,

$$r^{2}\frac{d^{2}y}{dr^{2}}+2r\frac{dy}{dr}+\left(\kappa^{2}r^{2}-n(n+1)\right)y=0$$

 

Which is same with equation \((a)\) when we substitue \(y\) to \(R(r)\)

$$r^{2}\frac{d^{2}R(r)}{dr^{2}}+2r\frac{dR(r)}{dr}+\left[\kappa^{2}r^{2}-n(n+1)\right]R(r)=0\cdots(a)$$

 

Conclusion

Solution of equation \((a)\): 

$$j_{n}(x)=j_{n}(\kappa r)$$

 

Reference

Wikipedia, Bessel function

 

 

'공학 > 공학수학' 카테고리의 다른 글

Orthogonality of Legendre polynomial #1  (0) 2022.08.01
직교성(Orthogonality) #1  (0) 2022.07.30
파동 방정식(wave equation) #3  (0) 2022.07.26
파동 방정식(wave equation) #2  (0) 2022.07.26
직선의 방정식(The equation of line)  (0) 2022.07.26
Comments