04-11 04:45
«   2025/04   »
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30
Archives
Today
Total
관리 메뉴

대학원 공부노트

파동 방정식(wave equation) #4 본문

공학/공학수학

파동 방정식(wave equation) #4

lightbulb_4999 2022. 7. 26. 13:31

Pixabay

[모바일에서는 수식이 모두 LaTeX 그대로 나옵니다. 따라서 PC로 보실 것 적극 권장 드립니다.]

 

d2R(r)dr2+2rdR(r)dr+ω2c2R(r)n(n+1)r2R(r)=0

 

Spherical Bessel function

x2d2ydx2+2xdydx+(x2n(n+1))y=0

 

And this is the eqaution we derived from spherical wave equation:

 

r2d2R(r)dr2+2rdR(r)dr+r2ω2c2R(r)n(n+1)R(r)=0

 

First, bring physical concept 'wavenumber(κ)'

ω2c2=κ2

 

Then,

r2d2R(r)dr2+2rdR(r)dr+[κ2r2n(n+1)]R(r)=0(a)

 

Now, let's modify 'spherical Bessel function' to our equation (a)

 

Assume x=κr

dxdr=ddr(κr)=κ

dx=κdr

 

κ2r2d2ydx2+2κrdydx+((κ2r2)n(n+1))y=0

κ2r2ddxdydx+2κrdydx+(κ2r2n(n+1))y=0

 

Before expanding our equation, arrange the first term.

κr2ddrdydx=κr2ddrdyκdr=r2d2ydr2

 

Then,

r2d2ydr2+2rdydr+(κ2r2n(n+1))y=0

 

Which is same with equation (a) when we substitue y to R(r)

r2d2R(r)dr2+2rdR(r)dr+[κ2r2n(n+1)]R(r)=0(a)

 

Conclusion

Solution of equation (a)

jn(x)=jn(κr)

 

Reference

Wikipedia, Bessel function

 

 

'공학 > 공학수학' 카테고리의 다른 글

Orthogonality of Legendre polynomial #1  (0) 2022.08.01
직교성(Orthogonality) #1  (0) 2022.07.30
파동 방정식(wave equation) #3  (0) 2022.07.26
파동 방정식(wave equation) #2  (0) 2022.07.26
직선의 방정식(The equation of line)  (0) 2022.07.26
Comments