대학원 공부노트
파동 방정식(wave equation) #4 본문
[모바일에서는 수식이 모두 LaTeX 그대로 나옵니다. 따라서 PC로 보실 것 적극 권장 드립니다.]
$$\frac{d^{2}R(r)}{dr^{2}}+\frac{2}{r}\frac{dR(r)}{dr}+\frac{\omega^{2}}{c^{2}}R(r)-\frac{n(n+1)}{r^{2}}R(r)=0$$
Spherical Bessel function
$$x^{2}\frac{d^{2}y}{dx^{2}}+2x\frac{dy}{dx}+\left(x^{2}-n(n+1)\right)y=0$$
And this is the eqaution we derived from spherical wave equation:
$$r^{2}\frac{d^{2}R(r)}{dr^{2}}+2r\frac{dR(r)}{dr}+r^{2}\frac{\omega^{2}}{c^{2}}R(r)-n(n+1)R(r)=0$$
First, bring physical concept 'wavenumber(\(\kappa\))'
$$\frac{\omega^{2}}{c^{2}}=\kappa^{2}$$
Then,
$$r^{2}\frac{d^{2}R(r)}{dr^{2}}+2r\frac{dR(r)}{dr}+\left[\kappa^{2}r^{2}-n(n+1)\right]R(r)=0\cdots(a)$$
Now, let's modify 'spherical Bessel function' to our equation \((a)\)
Assume \(x=\kappa r\)
$$\frac{dx}{dr}=\frac{d}{dr}(\kappa r)=\kappa$$
$$dx=\kappa dr$$
$$\kappa^{2}r^{2}\frac{d^{2}y}{dx^{2}}+2\kappa r\frac{dy}{dx}+\left((\kappa^{2}r^{2})-n(n+1)\right)y=0$$
$$\kappa^{2}r^{2}\frac{d}{dx}\frac{dy}{dx}+2\kappa r\frac{dy}{dx}+\left(\kappa^{2}r^{2}-n(n+1)\right)y=0$$
Before expanding our equation, arrange the first term.
$$\kappa r^{2}\frac{d}{dr}\frac{dy}{dx}=\kappa r^{2}\frac{d}{dr}\frac{dy}{\kappa dr}=r^{2}\frac{d^{2}y}{dr^{2}}$$
Then,
$$r^{2}\frac{d^{2}y}{dr^{2}}+2r\frac{dy}{dr}+\left(\kappa^{2}r^{2}-n(n+1)\right)y=0$$
Which is same with equation \((a)\) when we substitue \(y\) to \(R(r)\)
$$r^{2}\frac{d^{2}R(r)}{dr^{2}}+2r\frac{dR(r)}{dr}+\left[\kappa^{2}r^{2}-n(n+1)\right]R(r)=0\cdots(a)$$
Conclusion
Solution of equation \((a)\):
$$j_{n}(x)=j_{n}(\kappa r)$$
Reference
Wikipedia, Bessel function
'공학 > 공학수학' 카테고리의 다른 글
Orthogonality of Legendre polynomial #1 (0) | 2022.08.01 |
---|---|
직교성(Orthogonality) #1 (0) | 2022.07.30 |
파동 방정식(wave equation) #3 (0) | 2022.07.26 |
파동 방정식(wave equation) #2 (0) | 2022.07.26 |
직선의 방정식(The equation of line) (0) | 2022.07.26 |