대학원 공부노트
직교성(Orthogonality) #1 본문
$$\langle f,g\rangle=\int_{a}^{b}{r(x)f(x)g(x)dx}=0$$
Here, \(r(x)~\)is nonnegative weight function and we usually put them 1.
$$\langle f,g \rangle=\int_{a}^{b}{f(x)g(x)dx}=0$$
Simple example of orthogonality 1:
$$\int_{0}^{2\pi}{\sin x\cos xdx}=0$$
$$u=\sin x$$
$$\frac{du}{dx}=\cos x$$
$$du=\cos x dx$$
$$\sin(x=0)=0~~~~\sin(x=2\pi)=0$$
$$\int_{0}^{0}{u du}=0$$
Simple example of orthogonality 2:
$$\int_{0}^{2\pi}{\sin(mx)\sin(nx)dx}=0$$
$$\sin(a)\sin(b)=\frac{1}{2}\left\{\cos(a-b)-\cos(a+b)\right\}$$
$$\int_{0}^{2\pi}{\sin(mx)\sin(nx)dx}=\frac{1}{2}\int_{0}^{2\pi}{\left[\cos(mx-nx)-\cos(mx+nx)\right]dx}=0$$
$$=\frac{1}{2}\int_{0}^{2\pi}{\cos(mx-nx)dx}-\frac{1}{2}\int_{0}^{2\pi}{\cos(mx+nx)dx}$$
$$u=(m-n)x$$
$$\frac{du}{dx}=m-n$$
$$dx=\frac{du}{m-n}$$
$$\int_{0}^{2\pi}{\cos(mx-nx)dx}=\int_{0}^{2\pi}{\cos(u)\frac{du}{m-n}}=\frac{1}{m-n}\int_{0}^{2\pi}{\cos(u)du}$$
$$=-\frac{1}{m-n}\sin(u)+c_{1}$$
$$=-\frac{1}{m-n}\sin(m-n)x+c_{1}$$
$$v=(m+n)x$$
$$\frac{dv}{dx}=m+n$$
$$dx=\frac{dv}{m+n}$$
$$\int_{0}^{2\pi}{\cos(mx+nx)dx}=\int_{0}^{2\pi}{\cos(v)\frac{dv}{m+n}}=\frac{1}{m+n}\int_{0}^{2\pi}{\cos(v)dv}$$
$$=-\frac{1}{m+n}\sin(v)+c_{2}$$
$$=-\frac{1}{m+n}\sin(m+n)x+c_{2}$$
$$-\frac{1}{2}\left[\frac{1}{m+n}\sin(m+n)x+\frac{1}{m-n}\sin(m-n)x\right]_{0}^{2\pi}+c_{3}=0~~(m\neq n)$$
애초에 \(sin\) 그래프가 해당 구간 내에서는 0이며 적분상수인 \(c_{3}\)는 무시해도 무방하다.
Wikipedia, Orthogonality
Wikipedia, Orthogonal functions
Wikipedia, Orthogonal polynomials
네이버 블로그, 칼있으마 「푸리에해석5: 삼각함수의 직교성 (Orthogonality of Trigonometric Functions)」
티스토리, STEMentor, #4.series solution(5. Legendre, Bessel의 응용)
'공학 > 공학수학' 카테고리의 다른 글
Associated Legendre Polynomial (0) | 2022.08.07 |
---|---|
Orthogonality of Legendre polynomial #1 (0) | 2022.08.01 |
파동 방정식(wave equation) #4 (0) | 2022.07.26 |
파동 방정식(wave equation) #3 (0) | 2022.07.26 |
파동 방정식(wave equation) #2 (0) | 2022.07.26 |