01-27 19:17
«   2025/01   »
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31
Archives
Today
Total
관리 메뉴

대학원 공부노트

Associated Legendre Polynomial 본문

공학/공학수학

Associated Legendre Polynomial

lightbulb_4999 2022. 8. 7. 10:00

powerpoint (Times New Roman)

Associated Legendre Polynomial:

$$P_{\ell}^{m}(x)=(-1)^{m}(1-x^{2})^{m/2}\frac{d^{m}}{dx^{m}}P_{\ell}(x)$$

 

이때 \(x=\cos\theta\)라 한다면

$$P_{\ell}^{m}(x=\cos\theta)=(-1)^{m}(1-\cos^{2}\theta)^{m/2}\frac{d^{m}}{d(\cos\theta)^{m}}P_{\ell}(x=\cos\theta)$$

 

$$P_{\ell}^{m}(\cos\theta)=(-1)^{m}(\sin^{2}\theta)^{m/2}\frac{d^{m}}{d(\cos\theta)^{m}}P_{\ell}(\cos\theta)$$

$$\frac{dx}{d\theta}=-\sin\theta$$

$$dx=-\sin\theta d\theta$$

$$dx^{m}=(-\sin\theta)^{m}d\theta^{m}$$

$$P_{\ell}^{m}(\cos\theta)=(-1)^{m}(\sin\theta)^{m}\frac{d^{m}}{(-1)^{m}\sin^{m}\theta d\theta^{m}}P_{\ell}({\cos\theta})$$

 

$$P_{\ell}^{m}(\cos\theta)=\frac{d^{m}}{d\theta^{m}}P_{\ell}(\cos\theta)$$

\(\blacksquare\)

 

Reference

Wikipedia, Associated Legendre polynomials

'공학 > 공학수학' 카테고리의 다른 글

Hankel function  (0) 2022.08.15
파동 방정식(wave equation) #5  (0) 2022.08.08
Orthogonality of Legendre polynomial #1  (0) 2022.08.01
직교성(Orthogonality) #1  (0) 2022.07.30
파동 방정식(wave equation) #4  (0) 2022.07.26
Comments