대학원 공부노트
Associated Legendre Polynomial 본문
Associated Legendre Polynomial:
$$P_{\ell}^{m}(x)=(-1)^{m}(1-x^{2})^{m/2}\frac{d^{m}}{dx^{m}}P_{\ell}(x)$$
이때 \(x=\cos\theta\)라 한다면
$$P_{\ell}^{m}(x=\cos\theta)=(-1)^{m}(1-\cos^{2}\theta)^{m/2}\frac{d^{m}}{d(\cos\theta)^{m}}P_{\ell}(x=\cos\theta)$$
$$P_{\ell}^{m}(\cos\theta)=(-1)^{m}(\sin^{2}\theta)^{m/2}\frac{d^{m}}{d(\cos\theta)^{m}}P_{\ell}(\cos\theta)$$
$$\frac{dx}{d\theta}=-\sin\theta$$
$$dx=-\sin\theta d\theta$$
$$dx^{m}=(-\sin\theta)^{m}d\theta^{m}$$
$$P_{\ell}^{m}(\cos\theta)=(-1)^{m}(\sin\theta)^{m}\frac{d^{m}}{(-1)^{m}\sin^{m}\theta d\theta^{m}}P_{\ell}({\cos\theta})$$
$$P_{\ell}^{m}(\cos\theta)=\frac{d^{m}}{d\theta^{m}}P_{\ell}(\cos\theta)$$
\(\blacksquare\)
Reference
Wikipedia, Associated Legendre polynomials
'공학 > 공학수학' 카테고리의 다른 글
Hankel function (0) | 2022.08.15 |
---|---|
파동 방정식(wave equation) #5 (0) | 2022.08.08 |
Orthogonality of Legendre polynomial #1 (0) | 2022.08.01 |
직교성(Orthogonality) #1 (0) | 2022.07.30 |
파동 방정식(wave equation) #4 (0) | 2022.07.26 |
Comments