대학원 공부노트
파동 방정식(wave equation) #5 본문
$$\psi(x,t)=f(x^{\prime})=f(x\mp vt)$$
First, differentiate with \(x\)
$$\frac{\partial \psi}{\partial x}=\frac{\partial f}{\partial x}=\frac{\partial f}{\partial x^{\prime}}{\color{blue}\frac{\partial x^{\prime}}{\partial x}}=\frac{\partial f}{\partial x^{\prime}}$$
$$x^{\prime}=x\mp vt$$
$${\color{blue}\frac{\partial x^{\prime}}{\partial x}}=1$$
$$\frac{\partial \psi}{\partial x}=\frac{\partial f}{\partial x}=\frac{\partial f}{\partial x^{\prime}}$$
\(\blacksquare\)
Then, differentiate with \(t\)
$$\frac{\partial\psi}{\partial t}=\frac{\partial \psi}{\partial x^{\prime}}\frac{\partial x^{\prime}}{\partial t}=\mp v\frac{\partial \psi}{\partial x^{\prime}}$$
$$x^{\prime}=x\mp vt$$
$$\frac{\partial x^{\prime}}{\partial t}=\mp v$$
$${\color{red}\frac{\partial \psi}{\partial t}}=\frac{\partial f}{\partial t}=\frac{\partial f}{\partial x^{\prime}}\frac{\partial x^{\prime}}{\partial t}={\color{red}\mp v \frac{\partial f}{\partial x^{\prime}}}$$
\(\blacksquare\)
Now, bring the wave equation below
$$\frac{\partial^{2}f}{\partial t^{2}}=v^{2}\frac{\partial^{2}f}{\partial x^{2}}$$
Let's make the simple first term with the equation we derived above
$$\frac{\partial}{\partial t}\left(\frac{\partial \psi}{\partial t}\right)=\frac{\partial}{\partial t}\left(\frac{\partial f}{\partial t}\right)=\frac{\partial^{2}f}{\partial t^{2}}~~\left(\psi=f\right)$$
Then rearrange the second term with the equation we derived above
$$v^{2}\frac{\partial}{\partial x}\left(\frac{\partial \psi}{\partial x}\right)=v^{2}\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x^{\prime}}\right)=v^{2}\frac{\partial}{\partial x^{\prime}}\frac{\partial x^{\prime}}{\partial x}\left(\frac{\partial f}{\partial x^{\prime}}\right)=v^{2}\frac{\partial^{2}f}{\partial x^{2}}$$
\(\blacksquare\)
다 작성하고 보니 이걸 내가 전에 왜 했을까 생각이 드네요. (그냥 자명한거 아닌가)
'공학 > 공학수학' 카테고리의 다른 글
Hankel function (0) | 2022.08.15 |
---|---|
Associated Legendre Polynomial (0) | 2022.08.07 |
Orthogonality of Legendre polynomial #1 (0) | 2022.08.01 |
직교성(Orthogonality) #1 (0) | 2022.07.30 |
파동 방정식(wave equation) #4 (0) | 2022.07.26 |