04-07 22:36
«   2025/04   »
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30
Archives
Today
Total
관리 메뉴

대학원 공부노트

Orthogonality of Legendre polynomial #1 본문

공학/공학수학

Orthogonality of Legendre polynomial #1

lightbulb_4999 2022. 8. 1. 10:00

Pixabay

(1x2)d2Pn(x)dx22xdPn(x)dx+n(n+1)Pn(x)=0

(1x2)d2Pn(x)dx2+(2x)dPn(x)dx+n(n+1)Pn(x)=0

(1x2)ddxdPn(x)dx+ddx(1x2)dPn(x)dx+n(n+1)Pn(x)=0

ddx[(1x2)dPn(x)dx]+n(n+1)Pn(x)(a)

 

First, substitute nm of equation (a)

ddx[(1x2)dPm(x)dx]+m(m+1)Pm(x)=0(b)

 

Second, multiply Pn(x) on equation (b)

ddx[(1x2)dPm(x)dx]Pn(x)+m(m+1)Pm(x)Pn(x)=0

 

Third, multiply Pm(x) on equation (a)

ddx[(1x2)dPn(x)dx]Pm(x)+n(n+1)Pn(x)Pm(x)=0(c)

 

Fourth, subtract (b) from (a)

But as it is quite complex, let's divide them into first term :

ddx[(1x2)Pm(x)]Pn(x)ddx[(1x2)Pn(x)]Pm(x)

 

and second term

m(m+1)Pm(x)Pn(x)n(n+1)Pn(x)Pm(x)

 

Let's rearrange the first term first.

ddx[(1x2)Pm(x)]Pn(x)ddx[(1x2)Pn(x)]Pm(x)

 

=ddx(1x2)Pm(x)Pn(x)+(1x2)d2Pm(x)dx2Pn(x)

   ddx(1x2)Pn(x)Pm(x)(1x2)d2Pn(x)dx2Pm(x)

 

=ddx(1x2)(Pm(x)Pn(x)Pm(x)Pn(x))

   +(1x2)(d2Pm(x)dx2Pn(x)Pm(x)d2Pn(x)dx2)(d)

 

Equation (d) can be neatly re-rearranged like below:

=ddx[(1x2){Pm(x)Pn(x)Pm(x)Pn(x)}]

 

* Proof:

=ddx(1x2)(Pm(x)Pn(x)Pm(x)Pn(x))

+(1x2)ddx(Pm(x)Pn(x)Pm(x)Pn(x))

 

=ddx(1x2)(Pm(x)Pn(x)Pm(x)Pn(x))

+(1x2)[d2Pm(x)dx2Pn(x)+PmPn(x)Pm(x)Pn(x)Pm(x)d2Pn(x)dx2]

 

Then rearrange the second term.

m(m+1)Pm(x)Pn(x)n(n+1)Pn(x)Pm(x)

=(m2+mn2n)Pm(x)Pn(x)

=[(m+n)(mn)+(mn)]Pm(x)Pn(x)

=(m+n+1)(mn)Pm(x)Pn(x)

 

Now, let's sum up two terms we rearranged.

ddx[(1x2){Pm(x)Pn(x)Pn(x)Pm(x)}]+(mn)(m+n+1)Pm(x)Pn(x)=0(e)

 

Integral (e) from -1 to 1,

Then first term of equation (e) will be eliminated, and only the second term will be left.

(mn)(m+n+1)11Pm(x)Pn(x)dx=0

11Pm(x)Pn(x)dx=0,   (mn)

 

Reference

Mathematics stack exchange, Proving that Legendre Polynomial is orthogonal

'공학 > 공학수학' 카테고리의 다른 글

파동 방정식(wave equation) #5  (0) 2022.08.08
Associated Legendre Polynomial  (0) 2022.08.07
직교성(Orthogonality) #1  (0) 2022.07.30
파동 방정식(wave equation) #4  (0) 2022.07.26
파동 방정식(wave equation) #3  (0) 2022.07.26