01-27 19:17
«   2025/01   »
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31
Archives
Today
Total
관리 메뉴

대학원 공부노트

Orthogonality of Legendre polynomial #1 본문

공학/공학수학

Orthogonality of Legendre polynomial #1

lightbulb_4999 2022. 8. 1. 10:00

Pixabay

$$(1-x^{2})\frac{d^{2}P_{n}(x)}{dx^{2}}-2x\frac{dP_{n}(x)}{dx}+n(n+1)P_{n}(x)=0$$

$$(1-x^{2})\frac{d^{2}P_{n}(x)}{dx^{2}}+(-2x)\frac{dP_{n}(x)}{dx}+n(n+1)P_{n}(x)=0$$

$$(1-x^{2})\frac{d}{dx}\frac{dP_{n}(x)}{dx}+\frac{d}{dx}(1-x^{2})\frac{dP_{n}(x)}{dx}+n(n+1)P_{n}(x)=0$$

$$\frac{d}{dx}\left[(1-x^{2})\frac{dP_{n}(x)}{dx}\right]+n(n+1)P_{n}(x)\cdots(a)$$

 

First, substitute \(n\rightarrow m\) of equation \((a)\)

$$\frac{d}{dx}\left[(1-x^{2})\frac{dP_{m}(x)}{dx}\right]+m(m+1)P_{m}(x)=0\cdots(b)$$

 

Second, multiply \(P_{n}(x)\) on equation \((b)\)

$$\frac{d}{dx}\left[(1-x^{2})\frac{dP_{m}(x)}{dx}\right]{\color{blue}P_{n}(x)}+m(m+1)P_{m}(x){\color{blue}P_{n}(x)}=0$$

 

Third, multiply \(P_{m}(x)\) on equation \((a)\)

$$\frac{d}{dx}\left[(1-x^{2})\frac{dP_{n}(x)}{dx}\right]{\color{red}P_{m}(x)}+n(n+1)P_{n}(x){\color{red}P_{m}(x)}=0\cdots(c)$$

 

Fourth, subtract \((b)\) from \((a)\)

But as it is quite complex, let's divide them into first term :

$$\frac{d}{dx}\left[(1-x^{2})P_{m}^{\prime}(x)\right]P_{n}(x)-\frac{d}{dx}\left[(1-x^{2})P_{n}^{\prime}(x)\right]P_{m}(x)$$

 

and second term

$$m(m+1)P_{m}(x)P_{n}(x)-n(n+1)P_{n}(x)P_{m}(x)$$

 

Let's rearrange the first term first.

$$\frac{d}{dx}\left[(1-x^{2})P_{m}^{\prime}(x)\right]P_{n}(x)-\frac{d}{dx}\left[(1-x^{2})P_{n}^{\prime}(x)\right]P_{m}(x)$$

 

$$=\frac{d}{dx}(1-x^{2})P_{m}^{\prime}(x)P_{n}(x)+(1-x^{2})\frac{d^{2}P_{m}(x)}{dx^{2}}P_{n}(x)$$

$$~~~-\frac{d}{dx}(1-x^{2})P_{n}^{\prime}(x)P_{m}(x)-(1-x^{2})\frac{d^{2}P_{n}(x)}{dx^{2}}P_{m}(x)$$

 

$$=\frac{d}{dx}(1-x^{2})\left(P_{m}^{\prime}(x)P_{n}(x)-P_{m}(x)P_{n}^{\prime}(x)\right)$$

$$~~~+(1-x^{2})\left(\frac{d^{2}P_{m}(x)}{dx^{2}}P_{n}(x)-P_{m}(x)\frac{d^{2}P_{n}(x)}{dx^{2}}\right)\cdots(d)$$

 

Equation \((d)\) can be neatly re-rearranged like below:

$$=\frac{d}{dx}\left[(1-x^{2})\left\{P_{m}^{\prime}(x)P_{n}(x)-P_{m}(x)P_{n}^{\prime}(x)\right\}\right]$$

 

* Proof:

$$=\frac{d}{dx}(1-x^{2})\left(P_{m}^{\prime}(x)P_{n}(x)-P_{m}(x)P_{n}^{\prime}(x)\right)$$

$$+(1-x^{2})\frac{d}{dx}\left(P_{m}^{\prime}(x)P_{n}(x)-P_{m}(x)P_{n}^{\prime}(x)\right)$$

 

$$=\frac{d}{dx}(1-x^{2})\left(P_{m}^{\prime}(x)P_{n}(x)-P_{m}(x)P_{n}^{\prime}(x)\right)$$

$$+(1-x^{2})\left[\frac{d^{2}P_{m}(x)}{dx^{2}}P_{n}(x)+P_{m}^{\prime}P_{n}^{\prime}(x)-P_{m}^{\prime}(x)P_{n}^{\prime}(x)-P_{m}(x)\frac{d^{2}P_{n}(x)}{dx^{2}}\right]$$

\(\blacksquare\)

 

Then rearrange the second term.

$$m(m+1)P_{m}(x)P_{n}(x)-n(n+1)P_{n}(x)P_{m}(x)$$

$$=\left(m^{2}+m-n^{2}-n\right)P_{m}(x)P_{n}(x)$$

$$=\left[(m+n)(m-n)+(m-n)\right]P_{m}(x)P_{n}(x)$$

$$=(m+n+1)(m-n)P_{m}(x)P_{n}(x)$$

\(\blacksquare\)

 

Now, let's sum up two terms we rearranged.

$$\frac{d}{dx}\left[(1-x^{2})\left\{P_{m}^{\prime}(x)P_{n}(x)-P_{n}^{\prime}(x)P_{m}(x)\right\}\right]+(m-n)(m+n+1)P_{m}(x)P_{n}(x)=0\cdots(e)$$

 

Integral \((e)\) from -1 to 1,

Then first term of equation \((e)\) will be eliminated, and only the second term will be left.

$$(m-n)(m+n+1)\int_{-1}^{1}{P_{m}(x)P_{n}(x)dx}=0$$

$$\int_{-1}^{1}{P_{m}(x)P_{n}(x)dx}=0, ~~~(m\neq n)$$

 

Reference

Mathematics stack exchange, Proving that Legendre Polynomial is orthogonal

'공학 > 공학수학' 카테고리의 다른 글

파동 방정식(wave equation) #5  (0) 2022.08.08
Associated Legendre Polynomial  (0) 2022.08.07
직교성(Orthogonality) #1  (0) 2022.07.30
파동 방정식(wave equation) #4  (0) 2022.07.26
파동 방정식(wave equation) #3  (0) 2022.07.26
Comments