대학원 공부노트
Orthogonality of Legendre polynomial #1 본문
$$(1-x^{2})\frac{d^{2}P_{n}(x)}{dx^{2}}-2x\frac{dP_{n}(x)}{dx}+n(n+1)P_{n}(x)=0$$
$$(1-x^{2})\frac{d^{2}P_{n}(x)}{dx^{2}}+(-2x)\frac{dP_{n}(x)}{dx}+n(n+1)P_{n}(x)=0$$
$$(1-x^{2})\frac{d}{dx}\frac{dP_{n}(x)}{dx}+\frac{d}{dx}(1-x^{2})\frac{dP_{n}(x)}{dx}+n(n+1)P_{n}(x)=0$$
$$\frac{d}{dx}\left[(1-x^{2})\frac{dP_{n}(x)}{dx}\right]+n(n+1)P_{n}(x)\cdots(a)$$
First, substitute \(n\rightarrow m\) of equation \((a)\)
$$\frac{d}{dx}\left[(1-x^{2})\frac{dP_{m}(x)}{dx}\right]+m(m+1)P_{m}(x)=0\cdots(b)$$
Second, multiply \(P_{n}(x)\) on equation \((b)\)
$$\frac{d}{dx}\left[(1-x^{2})\frac{dP_{m}(x)}{dx}\right]{\color{blue}P_{n}(x)}+m(m+1)P_{m}(x){\color{blue}P_{n}(x)}=0$$
Third, multiply \(P_{m}(x)\) on equation \((a)\)
$$\frac{d}{dx}\left[(1-x^{2})\frac{dP_{n}(x)}{dx}\right]{\color{red}P_{m}(x)}+n(n+1)P_{n}(x){\color{red}P_{m}(x)}=0\cdots(c)$$
Fourth, subtract \((b)\) from \((a)\)
But as it is quite complex, let's divide them into first term :
$$\frac{d}{dx}\left[(1-x^{2})P_{m}^{\prime}(x)\right]P_{n}(x)-\frac{d}{dx}\left[(1-x^{2})P_{n}^{\prime}(x)\right]P_{m}(x)$$
and second term
$$m(m+1)P_{m}(x)P_{n}(x)-n(n+1)P_{n}(x)P_{m}(x)$$
Let's rearrange the first term first.
$$\frac{d}{dx}\left[(1-x^{2})P_{m}^{\prime}(x)\right]P_{n}(x)-\frac{d}{dx}\left[(1-x^{2})P_{n}^{\prime}(x)\right]P_{m}(x)$$
$$=\frac{d}{dx}(1-x^{2})P_{m}^{\prime}(x)P_{n}(x)+(1-x^{2})\frac{d^{2}P_{m}(x)}{dx^{2}}P_{n}(x)$$
$$~~~-\frac{d}{dx}(1-x^{2})P_{n}^{\prime}(x)P_{m}(x)-(1-x^{2})\frac{d^{2}P_{n}(x)}{dx^{2}}P_{m}(x)$$
$$=\frac{d}{dx}(1-x^{2})\left(P_{m}^{\prime}(x)P_{n}(x)-P_{m}(x)P_{n}^{\prime}(x)\right)$$
$$~~~+(1-x^{2})\left(\frac{d^{2}P_{m}(x)}{dx^{2}}P_{n}(x)-P_{m}(x)\frac{d^{2}P_{n}(x)}{dx^{2}}\right)\cdots(d)$$
Equation \((d)\) can be neatly re-rearranged like below:
$$=\frac{d}{dx}\left[(1-x^{2})\left\{P_{m}^{\prime}(x)P_{n}(x)-P_{m}(x)P_{n}^{\prime}(x)\right\}\right]$$
* Proof:
$$=\frac{d}{dx}(1-x^{2})\left(P_{m}^{\prime}(x)P_{n}(x)-P_{m}(x)P_{n}^{\prime}(x)\right)$$
$$+(1-x^{2})\frac{d}{dx}\left(P_{m}^{\prime}(x)P_{n}(x)-P_{m}(x)P_{n}^{\prime}(x)\right)$$
$$=\frac{d}{dx}(1-x^{2})\left(P_{m}^{\prime}(x)P_{n}(x)-P_{m}(x)P_{n}^{\prime}(x)\right)$$
$$+(1-x^{2})\left[\frac{d^{2}P_{m}(x)}{dx^{2}}P_{n}(x)+P_{m}^{\prime}P_{n}^{\prime}(x)-P_{m}^{\prime}(x)P_{n}^{\prime}(x)-P_{m}(x)\frac{d^{2}P_{n}(x)}{dx^{2}}\right]$$
\(\blacksquare\)
Then rearrange the second term.
$$m(m+1)P_{m}(x)P_{n}(x)-n(n+1)P_{n}(x)P_{m}(x)$$
$$=\left(m^{2}+m-n^{2}-n\right)P_{m}(x)P_{n}(x)$$
$$=\left[(m+n)(m-n)+(m-n)\right]P_{m}(x)P_{n}(x)$$
$$=(m+n+1)(m-n)P_{m}(x)P_{n}(x)$$
\(\blacksquare\)
Now, let's sum up two terms we rearranged.
$$\frac{d}{dx}\left[(1-x^{2})\left\{P_{m}^{\prime}(x)P_{n}(x)-P_{n}^{\prime}(x)P_{m}(x)\right\}\right]+(m-n)(m+n+1)P_{m}(x)P_{n}(x)=0\cdots(e)$$
Integral \((e)\) from -1 to 1,
Then first term of equation \((e)\) will be eliminated, and only the second term will be left.
$$(m-n)(m+n+1)\int_{-1}^{1}{P_{m}(x)P_{n}(x)dx}=0$$
$$\int_{-1}^{1}{P_{m}(x)P_{n}(x)dx}=0, ~~~(m\neq n)$$
Reference
Mathematics stack exchange, Proving that Legendre Polynomial is orthogonal
'공학 > 공학수학' 카테고리의 다른 글
파동 방정식(wave equation) #5 (0) | 2022.08.08 |
---|---|
Associated Legendre Polynomial (0) | 2022.08.07 |
직교성(Orthogonality) #1 (0) | 2022.07.30 |
파동 방정식(wave equation) #4 (0) | 2022.07.26 |
파동 방정식(wave equation) #3 (0) | 2022.07.26 |