대학원 공부노트
Hasegawa(1969) 5번 식 해설 본문
$$p=A e^{i(\omega t - kx)}=Ae^{i\omega}e^{-ikx}=Ae^{i\omega t}e^{-ikr\cos\theta}$$
$$(x=r\cos\theta)$$
이번 페이지에서 다룰 내용은 Fourier-Legendre series를 다룰 예정입니다.
목표는 아래 두 식을 유도해내는 것이에요.
$$f(x)=\sum_{n=0}^{\infty}{a_{n}P_{n}}$$
$$a_{m}=\frac{2m+1}{2}\int_{-1}^{1}{f(x)P_{m}(x)dx}$$
Step 1: Legendre Polynomial
To derive above equations, we need 'Legendre polynomial'
$$P_{n}(x)=\sum_{m=0}^{M}{(-1)^{m}\frac{(2n-2m)!}{2^{n}m!(n-m)!(n-2m)!}x^{n-2m}}$$
Similarily, we can express \(f(x)\) with Legendre polynomial
$$f(x)=\sum_{n=0}^{\infty}{a_{n}P_{n}(x)}$$
And coefficient \(a_{n}\) can be derived by using orthogonality
(We derived/studied 'orthogonality' before.)
$$\int_{-1}^{1}{r(x)P_{m}(x)P_{n}(x)}=0~~(m\neq n)$$
$$f(x)=\sum_{n=0}^{\infty}{a_{n}P_{n}(x)}$$
$$r(x){\color{blue}f(x)}P_{m}(x)={\color{blue}\sum_{n=0}^{\infty}}{{\color{blue}a_{n}P_{n}(x)}r(x)P_{m}(x)}$$
$$\int_{-1}^{1}{r(x)f(x)P_{m}(x)dx}=\int_{-1}^{1}{\sum_{n=0}^{\infty}{a_{n}r(x)P_{n}(x)P_{m}(x)}dx}\cdots(1)$$
According to orthogonality under \(m\neq n)
$$\int_{-1}^{1}{P_{n}(x)P_{m}(x)dx}=0$$
So, equation (1) will be...
$$\int_{-1}^{1}{r(x)f(x)P_{m}(x)dx}=a_{n}\int_{-1}^{1}{r(x)P_{m}(x)P_{n}(x)dx}~~~~(m=n)$$
$$a_{n}=\frac{\int_{-1}^{1}{r(x)f(x)P_{m}(x)dx}}{\int_{-1}^{1}{r(x)P_{m}^{2}(x)dx}}$$
Step 2: Rodrigues formula
We derived/studied 'Rodrigues formula' before.
$$P_{n}(x)=\frac{1}{2^{n}n!}\frac{d^{n}}{dx^{n}}(x^{2}-1)^{n}$$
Let's put this equation in our integral form.
$$\int_{-1}^{1}{P_{n}^{2}(x)dx}=\frac{1}{2^{2n}(n!)^{2}}\int_{-1}^{1}{\frac{d^{n}}{dx^{n}}(x^{2}-1)^{n}\frac{d^{n}}{dx^{n}}(x^{2}-1)^{n}dx}$$
As it is too complex to solve at once, use integration by parts.
Reference
Advanced Engineering Mathematics p.178 SEC 5.2 Legendre's equation. Legendre polynomials
'대학원 공부 > Hasegawa' 카테고리의 다른 글
Hasegawa equation (0) | 2022.08.05 |
---|---|
Hasegawa(1969) 1번 식 해설 4편(완) (0) | 2022.07.31 |
Hasegawa(1969) 1번 식 해설 3편 (0) | 2022.07.29 |
Hasegawa(1969) 1번 식 해설 2편 (0) | 2022.07.26 |
Hasegawa(1969) 1번 식 해설 1편 (0) | 2022.07.25 |