04-10 07:15
«   2025/04   »
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30
Archives
Today
Total
관리 메뉴

대학원 공부노트

Hasegawa(1969) 5번 식 해설 본문

대학원 공부/Hasegawa

Hasegawa(1969) 5번 식 해설

lightbulb_4999 2022. 8. 16. 10:00

p=Aei(ωtkx)=Aeiωeikx=Aeiωteikrcosθ

(x=rcosθ)

 

이번 페이지에서 다룰 내용은 Fourier-Legendre series를 다룰 예정입니다.

목표는 아래 두 식을 유도해내는 것이에요.

f(x)=n=0anPn

am=2m+1211f(x)Pm(x)dx

 


Step 1: Legendre Polynomial

To derive above equations, we need 'Legendre polynomial'

Pn(x)=m=0M(1)m(2n2m)!2nm!(nm)!(n2m)!xn2m

 

Similarily, we can express f(x) with Legendre polynomial

f(x)=n=0anPn(x)

 

And coefficient an can be derived by using orthogonality

(We derived/studied 'orthogonality' before.)

11r(x)Pm(x)Pn(x)=0  (mn)

 

f(x)=n=0anPn(x)

r(x)f(x)Pm(x)=n=0anPn(x)r(x)Pm(x)

11r(x)f(x)Pm(x)dx=11n=0anr(x)Pn(x)Pm(x)dx(1)

 

According to orthogonality under \(m\neq n)

11Pn(x)Pm(x)dx=0

 

So, equation (1) will be...

11r(x)f(x)Pm(x)dx=an11r(x)Pm(x)Pn(x)dx    (m=n)

an=11r(x)f(x)Pm(x)dx11r(x)Pm2(x)dx

 

Step 2: Rodrigues formula

We derived/studied 'Rodrigues formula' before.

Pn(x)=12nn!dndxn(x21)n

 

Let's put this equation in our integral form.

11Pn2(x)dx=122n(n!)211dndxn(x21)ndndxn(x21)ndx

 

As it is too complex to solve at once, use integration by parts.

 

 

 

Reference

Advanced Engineering Mathematics p.178 SEC 5.2 Legendre's equation. Legendre polynomials

 

 

 

'대학원 공부 > Hasegawa' 카테고리의 다른 글

Hasegawa equation  (0) 2022.08.05
Hasegawa(1969) 1번 식 해설 4편(완)  (0) 2022.07.31
Hasegawa(1969) 1번 식 해설 3편  (0) 2022.07.29
Hasegawa(1969) 1번 식 해설 2편  (0) 2022.07.26
Hasegawa(1969) 1번 식 해설 1편  (0) 2022.07.25