대학원 공부노트
질량관성모멘트 Moment of inertia 본문
Moment
$$dM=dF\times r\cdots(1)$$
Here, \(F\) is
$$F=ma\cdots(2)$$
And \(\vec{a}\) is
$$l=r\theta$$
$$\frac{dl}{dt}=r\frac{d\theta}{dt}+\theta\frac{dr}{dt}$$
$$\vec{v}=\frac{dl}{dt}=r\frac{d\theta}{dt}=r\omega~~(r=const)$$
$$\vec{v}=r\omega$$
$$\frac{d\vec{v}}{dt}=r\frac{d\omega}{dt}+\omega\frac{dr}{dt}$$
$$\vec{a}=\frac{d\vec{v}}{dt}=r\frac{d\omega}{dt}=r\alpha~~(r=const)$$
$$\vec{a}=r\alpha\cdots(3)$$
Substitute \(\vec{a}\) of eqaution (2) with eqaution (3)
$$dF=dm\times(r\alpha)\cdots(4)$$
Then substitute \(dF\) of equation (1) with equation (4)
$$dM=dm\times(r \alpha)r$$
$$dM=\alpha r^{2} dm\cdots(5)$$
Integrate equation (5)
$$M=\int{\alpha r^{2}dm}=\alpha\int{r^{2}dm}=\alpha I$$
Here. I is 'moment of inertia'
'공학 > 고체역학' 카테고리의 다른 글
Strain Energy (1) (0) | 2022.12.18 |
---|---|
Center of mass and Centroid (0) | 2022.09.28 |
Center of mass (0) | 2022.09.27 |
평행축 정리 Parallel axis theorem (0) | 2022.09.24 |
Stress along different direction frtom axis direction (0) | 2022.09.23 |
Comments