대학원 공부노트
Stress along different direction frtom axis direction 본문
[Please insert the figure later, for better explanation]
<Normal stress>
$$\sigma_{x}=\frac{P}{A_{x}}$$
$$\sigma_{x}^{\prime}=\frac{P\cos\theta}{A_{x}^{\prime}}$$
$$A_{x}^{\prime}=\frac{A_{x}}{\cos\theta}$$
$$\sigma_{x}^{\prime}=\frac{P\cos\theta}{1}\times\frac{\cos\theta}{A_{x}}=\frac{P}{A_{x}}\cos^{2}\theta=\sigma_{x}\cos^{2}\theta$$
$$\sigma_{x}^{\prime}=\sigma_{x}\cos^{2}\theta$$
<Shear stress>
$$\tau_{x^{\prime}y^{\prime}}=\frac{1}{A_{x}^{\prime}}\times(-P\sin\theta)$$
$$\tau_{x^{\prime}y^{\prime}}=\frac{\cos\theta}{A_{x}}(-P\cos\theta)$$
$$\tau_{x^{\prime}y^{\prime}}=-\frac{P}{A_{x}}\cos\theta\sin\theta$$
$$\tau_{x^{\prime}y^{\prime}}=-\frac{P}{A_{x}}\cos\theta\sin\theta$$
$$\tau_{x^{\prime}y^{\prime}}=-\sigma_{x}\cos\theta\sin\theta$$
'공학 > 고체역학' 카테고리의 다른 글
Strain Energy (1) (0) | 2022.12.18 |
---|---|
Center of mass and Centroid (0) | 2022.09.28 |
Center of mass (0) | 2022.09.27 |
평행축 정리 Parallel axis theorem (0) | 2022.09.24 |
질량관성모멘트 Moment of inertia (0) | 2022.09.22 |
Comments